Postconditioning ameliorates mitochondrial DNA damage and deletion after renal ischemic injury

نویسندگان

  • Xiaohua Tan
  • Lei Zhang
  • Yunpeng Jiang
  • Yujia Yang
  • Wenqi Zhang
  • Yulin Li
  • Xiuying Zhang
چکیده

BACKGROUND Reactive oxygen species (ROS) play a major role in causing injury in ischemia-reperfusion (I/R). Mitochondrial DNA (mtDNA) is particularly vulnerable to oxidative damage. We propose that increased mitochondrial ROS production is likely to damage mtDNA, causing further injury to mitochondria, and postconditioning (POC) may ameliorate kidney I/R injury by mitigating mitochondrial damage. METHODS Rats were divided into seven groups: (i) Sham-operated animals with an unconstricted renal artery; (ii) Sham + 5-hydroxydecanoate (5-HD); (iii) I/R; (iv) I/R + 5-HD; (v) POC; (vi) Sham POC and (vii) POC + 5-HD. Renal injury, oxidative DNA damage, mtDNA deletions, mitochondrial membrane potential (MMP) and expression of the ATP-sensitive K(+) (KATP) channel subunit Kir6.2 were evaluated. RESULTS Following 1 h of reperfusion, animals in the I/R group exhibited increased ROS, oxidative mtDNA damage shown by 8-hydroxy-2-deoxyguanosine staining, multiple base pair deletions and decreased MMP. However, POC rats exhibited less ROS, oxidative mtDNA damage and deletions and improved MMP. After 2 days of reperfusion, serum creatinine was elevated in I/R rats and the number of TdT-mediated dUTP nick-end labeled-positive tubular cells was increased and was associated with activation of caspase-3. Therefore, POC prevented the deleterious effects of I/R injury. Furthermore, the expression of mitochondrial Kir6.2 was widely distributed in renal tubular epithelial cells in Sham and POC rats and was lower in I/R rats. All of the protective effects of POC were reversed by the K(+) (KATP) channel blocker 5-HD. CONCLUSION POC may attenuate I/R injury by reducing mitochondrial oxidative stress and mtDNA damage and sustaining MMP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ischemic Postconditioning Attenuates Bilateral Renal Ischemia-Induced Cognitive Impairments

Background and aim: Acute kidney injury (AKI) is a frequent complication of kidney failure with high mortality which leads to brain dysfunction. The aim of this study was to investigate the possible protective effect of ischemic postconditioning (IPo) against brain dysfunction induced by bilateral renal ischemia (BRI). Materials and methods: Male Wistar rats underwent BRI, sham or IPo surgery ...

متن کامل

Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?

Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...

متن کامل

Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide.

Renal ischemia was induced in the rat by constriction of the renal artery for 45 min, and the ability of the ATP-sensitive K(+) (K(ATP)) channel opener diazoxide (DZ) to ameliorate renal ischemia-reperfusion (I/R) injury was evaluated. In this model, blood urea nitrogen and creatinine were elevated 2 days after I/R injury but returned closer to normal levels by 7 days after reperfusion. Histolo...

متن کامل

P-201: Prevalence of 4977bp Deletion in Mitochondrial DNA in IVF Failure Women

Background: Successful IVF process is limited by factors such as oocyte quality. Oocyte quality can be defined as its abilities to be fertilized, mature and give rise to normal offspring and it is dependent on nuclear maturation and cytoplasm maturation. Damage to mitochondrial DNA (mtDNA) has been described in oocytes in IVF failure women that decrease cytoplasmic quality because Mitochondria ...

متن کامل

Remote Ischemic Postconditioning Ameliorates the Mesenchymal Stem Cells Engraftment in Reperfused Myocardium

OBJECTIVES Remote Ischemic postconditioning (RIPoC) is a cardioprotective strategy for alleviating the reperfusion injury. We hypothesized that RIPoC or ischemic postconditioning (IPoC) could protect the engrafted mesenchymal stem cells (MSCs) in reperfusion myocardium. METHODS Female Sprague-Dawley rats were subject to 30 minutes of occlusion of left anterior descending (LAD). Ischemia reper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013